A new form of weaker separation axioms via pgrα - closed sets ααpgppgrα - closed sets

نویسندگان

  • K. Binoy Balan
  • C. Janaki
چکیده

The aim of this paper is to introduce and characterize pgrαregular spaces and pgrαnormal spaces via the concept of pgrαclosed sets. It also focuses on some of its basic properties and discusses on separation axioms between pgr-T0 and pgr-T1. An attempt has been made to make a comparative study with other usual separation axioms. Mathematics Subject Classification: 54C10, 54C08, 54C05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Regular Fuzzy Irresolute Mappings and Their Applications

In this paper, the notion of generalized regular fuzzy irresolute, generalized regular fuzzy irresolute open  and generalized regular fuzzy irresolute closed maps in fuzzy  topological spaces are introduced and studied. Moreover, some separation axioms and $r$-GRF-separated sets are established. Also, the relations between generalized regular fuzzy continuous maps and generalized regular fuzzy ...

متن کامل

Some new properties of fuzzy strongly ${{g}^{*}}$-closed sets and $delta {{g}^{*}}$-closed sets in fuzzy topological spaces

‎In this paper, a new class of fuzzy sets called fuzzy strongly ${{g}^{*}}$-closed sets is introduced and its properties are investigated. Moreover, we study some more properties of this type of closed spaces.

متن کامل

On characterizations of weakly $e$-irresolute functions

The aim of this paper is to introduce and obtain some characterizations of weakly $e$-irresolute functions by means of $e$-open sets defined by Ekici [6]. Also, we look into further properties relationships between weak $e$-irresoluteness and separation axioms and completely $e$-closed graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012